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Summary

Phenotypic plasticity is considered the major means by which plants cope with envi-
ronmental heterogeneity. Although ubiquitous in nature, actual phenotypic plasticity is
far from being maximal. This has been explained by the existence of internal limits to
its expression. However, phenotypic plasticity takes place within an ecological context
and plants are generally exposed to multifactor environments and to simultaneous
interactions with many species. These external, ecological factors may limit phenotypic
plasticity or curtail its adaptive value, but seldom have they been considered because
limits to plasticity have typically addressed factors internal to the plant. We show that
plastic responses to abiotic factors are reduced under situations of conservative resource
use in stressful and unpredictable habitats, and that extreme levels in a given abiotic factor
can negatively influence plastic responses to another factor. We illustrate how herbivory
may limit plant phenotypic plasticity because damaged plants can only rarely attain
the optimal phenotype in the challenging environment. Finally, it is examined how
phenotypic changes involved in trait-mediated interactions can entail costs for the
plant in further interactions with other species in the community. Ecological limits to
plasticity must be included in any realistic approach to understand the evolution of
plasticity in complex environments and to predict plant responses to global change.
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‘It is not the strongest of species that survive or the most

intelligent but the ones most responsive to change’

Charles R. Darwin (1859)

I. Phenotypic plasticity: if so good, why so little?

Environments are highly heterogeneous both in space and
time, and organisms must either acclimate to, or escape from,
adverse conditions. Phenotypic plasticity, or the capacity of a
given genotype to render different phenotypes under differ-
ent environmental conditions, is a means to cope with
environmental heterogeneity that is particularly adequate
for sessile organisms (Bradshaw, 1965; Sultan, 2000). The
ecological breadth of species may be partly explained by their
capacity to show plastic responses to the environment (Sultan,
2001; González & Gianoli, 2004; Saldaña et al., 2005).
Besides, phenotypic plasticity is a source of ample phenotypic
variation that may promote adaptive divergence and, thus,
evolution and speciation (West-Eberhard, 2003). Many
studies have shown that plants are plastic for numerous
ecologically important traits, ranging from morphology,
physiology and anatomy, to developmental and reproductive
timing, breeding system and offspring developmental
patterns (Sultan, 2000). In the last two decades phenotypic
plasticity of plants has become a central issue of ecological and
evolutionary research. There have been significant advances in
the understanding of the genetic basis and potential adaptive
value of reaction norms, which depict the variation in phenotypic
expression with the environment (Scheiner, 1993; Sultan,
1995, 2001; Pigliucci, 2001; Schlichting, 2002; DeWitt &
Scheiner, 2004; van Kleunen & Fischer, 2005; Valladares
et al., 2006).

Plastic responses of plants to contrasting environments
have been frequently reported as adaptive (e.g. Poorter &
Lambers, 1986; Valladares & Pearcy, 1998; Donohue et al.,
2003; Dudley, 2004), but this is not always the case (van
Kleunen & Fischer, 2005), and examples of maladaptive plas-
ticity do exist (Sánchez-Gómez et al., 2006a; Ghalambor
et al., 2007). There is abundant evidence that plant species
and populations may differ remarkably in the extent of their
plastic responses to comparable environmental challenges
(e.g. Schlichting & Levin, 1984; Valladares et al., 2000,
2002a; Balaguer et al., 2001; Sultan, 2001). Because pheno-
typic plasticity can be very advantageous for plants, the ques-
tion arises of why plasticity is not always maximal. Differences
among species and populations in their plasticity may reflect
differential selective pressures on plasticity, differential limita-
tions acting upon the maximization of plasticity, or a combi-
nation of both. Differential selective pressures on plasticity

have been suggested for habitats differing in their environ-
mental heterogeneity (Balaguer et al., 2001; Donohue et al.,
2003; Gianoli & González-Teuber, 2005), although not all
the environmental heterogeneity is functionally relevant for
the plant (Gómez et al., 2004). The fact that plasticity
observed in nature is often lower than that expected suggests
the existence of costs and limits of plasticity (Fig. 1). The costs
and limits of phenotypic plasticity are not as well understood
as its benefits (DeWitt et al., 1998; Givnish, 2002).

It is important to note that the observed phenotypic
responses to the environment are the net result of active and
passive responses. The potential plastic response in a given
trait may be large but the observed plasticity can be lowered
by resource limitation or environmental stress (van Kleunen
& Fischer, 2005). Besides, many phenotypic traits change
dramatically over the course of plant growth, a phenomenon
termed ontogenetic drift (Evans, 1972). Thus, size- or age-
dependent phenotypic variation must be taken into account
when estimating true phenotypic plasticity (Coleman et al.,
1994; Valladares et al., 2006). Ontogeny is also important in
studies addressing plasticity because plants have been shown
to express different levels of plasticity as they grow (e.g. Med-
iavilla & Escudero, 2004). Developmental reaction norms are
a suitable approach to account explicitly for ontogeny in stud-
ies of plasticity (Pigliucci et al., 1996; Schlichting & Pigliucci,
1998; Cheplick, 2003).

The most widely considered costs of plasticity are: (1)
maintenance costs of the mechanisms of plasticity; (2) pro-
duction costs of induced phenotypic features; (3) information
acquisition costs; (4) developmental instability of environ-
mentally contingent phenotypic features; and (5) genetic

Fig. 1 Many internal and ecological factors can influence the capacity 
of plants to respond to a given environmental factor. While the 
internal limits to plasticity have received sustained attention, the 
ecological constrains and costs induced by multiple biotic and 
abiotic factors, which more often than not exert their influence 
simultaneously, have been explored in less detail, despite the growing 
evidence of their importance.
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costs via linkage (the tendency for genes to be inherited
together because of their location near one another), pleiot-
ropy (control by a single gene of several apparently unrelated
aspects of the phenotype) or epistasis (masking of the pheno-
typic effect of alleles of one gene by alleles of another gene)
(DeWitt et al., 1998). Analyses addressing the limits to plas-
ticity usually include: (1) low reliability of environmental
information; (2) lag time in the response; (3) developmental
range limit; and (4) epiphenotype problems or phenotypic
add-on responses not integrated during early development
(DeWitt et al., 1998; Givnish, 2002). However, some of these
limits and costs of plasticity are specific for actively moving
organisms. Those that are most relevant for plants can be re-
arranged as: (1) genetic costs, including maintenance and
developmental instability costs; (2) plasticity history limits
(as shown by Weinig & Delph, 2001); (3) environmental reli-
ability costs; and (4) lag-time costs (van Kleunen & Fischer,
2005). Costs may vary in magnitude depending on environ-
mental conditions and they seem to be more significant in
stressful environments (Steinger et al., 2003).

Several additional, but less explored, factors can impose
further limits on the full expression of plasticity. For example,
phenotypic inertia induced by large propagules could lead to
a reduced plasticity in the case of juvenile plants, as suggested
by the study of Rice et al. (1993) on oak acorns. Besides,
phenotypic plasticity may not always evolve because of its
adaptive value: it can evolve as a result of genetic correlations
with other traits that are under selection (Pigliucci et al.,
2006). The fact that plant traits are correlated gives rise to an
integrated phenotype (Pigliucci & Preston, 2004) and could set
limits to the full expression of plasticity for individual traits
(Gianoli, 2001). The scant empirical studies on the ecological
significance of phenotypic integration suggest that stressful
environments lead to increased levels of phenotypic integra-
tion in plants (Schlichting, 1989; Waitt & Levin, 1993; Gian-
oli, 2004). This might also explain cases of reduced plasticity
under stressful conditions, in addition to the already men-
tioned passive responses that counteract active plasticity, and
the increased costs of plasticity under stress. However, we are
far from a solid understanding of phenotypic integration in
plants (Pigliucci & Preston, 2004), so there is still a need for
more empirical evidence and further theoretical develop-
ments in order to define its role as a potential limit to plasticity
for individual traits.

Although it is commonly accepted that plants must deal
with several co-occurring ecological factors in natural condi-
tions, most studies of phenotypic plasticity have been con-
ducted considering phenotypic responses to a single factor,
often an abiotic factor (e.g. light, water, temperature or nutri-
ents). However, potential plasticity to a given factor can be
influenced by other biotic and abiotic factors co-occurring in
complex, multivariate environments (Sultan et al., 1998; Val-
ladares et al., 2002b; Gianoli, 2003; Sánchez-Gómez et al.,
2006b; Gianoli et al., 2007; Maestre et al., 2007). The influence

of other environmental factors on the plastic responses to
a given environmental factor frequently leads to a reduced
expression of phenotypic plasticity, and this situation is what
we refer to here as the ecological limits to phenotypic plasticity,
in contrast to the more frequently addressed internal limits
(Fig. 1; Van Kleunen & Fischer, 2005). Ecological limits also
include information reliability issues but we will not extend
on them because they have received detailed attention in pre-
vious studies (e.g. Weinig, 2000). We use limits as a compre-
hensive term, including both constraints, when maximal
plasticity cannot be achieved, and costs, when actual plasticity
is not beneficial or even negative in terms of fitness (Fig. 1).

Our general aim here is to address plant phenotypic
responses to complex environments (i.e. when several ecolo-
gical factors act simultaneously upon plants). We are particu-
larly interested in understanding how plastic responses of
plants to one factor are influenced by changes elicited or lim-
itations imposed by other environmental factors. We will first
address plastic responses in multifactor abiotic scenarios, then
explore how biotic factors affect plastic responses to abiotic
factors, and finally discuss how plasticity influences and is
influenced by biotic interactions, with competition and her-
bivory as model biotic interactions. General hypotheses and
conceptual models will be put forward at each level of analysis
in order to refine our understanding of the rapidly expanding
field of phenotypic plasticity and to foster novel research
avenues. After revising our current understanding of plastic
phenotypic responses from individual to community level
processes, we will finish the review by discussing how all of this
could be integrated to study plant responses to global change.

II. Ecological constraints caused by abiotic factors

Even though plastic responses of plants to changing abiotic
factors tend to increase fitness across environments, low or
even no plasticity might be adaptive when environmental
change is not predictable or when no phenotypic response can
overcome the environmental challenge (Henry & Aarssen,
1997; Huber et al., 2004; Valladares et al., 2005a,b; Ghalambor
et al., 2007). Cases of potentially maladaptive plasticity have
been discussed for Mediterranean woody seedlings facing
unpredictable changes in stressful semi-arid environments
(Valladares et al., 2002b, 2005). Analogously, plasticity of
understory plants in response to light has been found to be low
in tropical, shade-tolerant, woody species (Valladares et al.,
2000), in agreement with a stress-tolerance strategy (Grime &
Mackey, 2002). A reduced plasticity in response to low light
might not enhance light capture of understory plants but can
avoid or minimize futile elongation in a situation where
canopy trees cannot be overtopped (Valladares & Niinemets,
in press). This agrees with the finding that the most plastic
species in response to light exhibited the highest seedling
mortality in deep shade in a comparative study of four Iberian
tree species (Fig. 2; Sánchez-Gómez et al., 2006a).
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Highly heterogeneous environments often involve hetero-
geneity in multiple factors. Light, temperature, and soil fertility
and moisture exhibit complex patterns in nature, frequently
covarying in nonlinear ways. The spatial and temporal scales
might be different for each factor, further complicating the
notion of ‘functional heterogeneity’ (sensu Li & Reynolds,
1995, i.e. the heterogeneity perceived and functionally relevant
for a given organism), and the interpretation of the associated
plant responses (Gómez et al., 2004; Gómez-Aparicio et al.,
2005). For example, while light heterogeneity can be relevant
at the scale of meters (Valladares, 2003; Valladares & Guz-
mán, 2006), soil heterogeneity might be relevant at the scale
of centimeters or less (Hodge, 2006). Frequently, the level of
at least one of the environmental factors represents a stressful
condition. As stress often operates in a temporary or fluctuat-
ing manner, facultative adaptations able to be produced
within a single genotype through phenotypic plasticity are
hypothesized to be adaptive (Bradshaw & Hardwick, 1989).
However, the response of plants to a combination of two or
more different abiotic stress factors is unique and cannot be
directly extrapolated from the response to each factor operat-
ing singly (Valladares & Pearcy, 1997; Mittler, 2006). Empirical
evidence on simultaneous plant responses to several abiotic
factors has, in fact, revealed a complex picture. Those woody
seedlings exhibiting greater elongation in the shade (i.e. being
highly plastic in response to light) were severely affected by a
cold snap taking place over the winter (Fig. 2). Drought sig-
nificantly reduced the survival of woody seedlings in deep
shade but, more interestingly, it also reduced plastic responses
to light of both shade-tolerant and shade-intolerant species in
a factorial experiment (Fig. 3). Most of these cases can be
explained by the fact that phenotypes which are advantageous

under extreme values of a given abiotic factor can be maladaptive
for extreme values of another factor. Thus, plasticity becomes
detrimental when the extreme values of both factors take place
simultaneously, as in the case of a dry understory. In fact, plant
species capable of tolerating more than one abiotic stress are,
in general, very scarce (Niinemets & Valladares, 2006), and
the combination of low light and drought, in particular, has
been argued to pose a very strong ecological filter (Valladares
& Pearcy, 2002). The hazardous nature of a dry shade is further
complicated in continental Mediterranean habitats by the cold
snaps that take place over the winter and early spring, making
questionable the notion of shade as a benign environment in
these semi-arid ecosystems (Valladares et al., 2005a,b).

Stem elongation in response to shade is one of the best
studied cases of phenotypic plasticity in plants. Changes in the
ratio of red to far-red wavelengths (R:FR) indicates neighbour
proximity and influences stem elongation (Ballaré, 1999).
However, because of the simultaneous variation of other envi-
ronmental factors, such responses to R:FR might become
maladaptive. This was shown by Weinig (2000a,b), who found
that temperature and photoperiod set limits to adaptive R:FR
responses in different populations of Abutilon theophrasti.

Fig. 2 Scenarios of negative fitness associated with phenotypic 
plasticity. Influence of phenotypic plasticity in response to available 
light on the survival of woody Mediterranean seedlings either under 
deep shade (a) or after unusually cold snaps over the winter (b). In 
both cases, species exhibiting highly plastic responses to light were 
those exhibiting low survival under limiting conditions of light or 
temperature. Survival in deep shade was quantified in four species 
(elaborated from data in Sánchez-Gómez et al., 2006a,c), whereas 
survival after the cold snap was assessed in eight species (unpublished 
results from the experiment in Sánchez-Gómez et al., 2006b). 
Plasticity is expressed by the plasticity index of Valladares et al. (2000) 
which spans from 0 (no plasticity) to 1 (maximal plasticity).

Fig. 3 Scenarios of constraints to plasticity imposed by abiotic factors 
(drought). Phenotypic plasticity in response to light (a) and shade 
survival (b) of seedlings of two oaks (continuous lines) and two 
pines (dashed lines) at two contrasting levels of water availability 
(elaborated from data in Sánchez-Gómez et al. (2006a,c). Oaks were 
less plastic but more shade tolerant than pines, and water stress 
significantly reduced not only survival but also plasticity to light in the 
two groups of species. Plasticity is expressed by the plasticity index of 
Valladares et al. (2000), which spans from 0 (no plasticity) to 1 
(maximal plasticity).
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This is a clear example of multiple environmental factors
varying simultaneously and limiting the adaptive value of
responses to a single cue such as light quality. Plants can over-
come this problem to some extent by responding to a combi-
nation of cues, and this is the case for shade avoidance (Pierik
et al., 2004a). Elongation can be the result of many factors
acting in concert, including not only phytochrome-mediated
responses to R:FR but also the integrated action of the plant
hormones ethylene, auxin, gibberellin and abscisic acid
(Voesenek et al., 2004). Thus, maximal elongation in
response to shade was observed when not only R:FR was
modified but also when the atmospheric ethylene concentra-
tion was simultaneously enhanced (Pierik et al., 2004a,b).
These studies with transgenic tobacco revealed the interesting
situation that responses to shade were mediated by a multisig-
nal mode of neighbour detection, which can significantly
reduce the information reliability limits of plasticity.

Interestingly, stem length is a phenotypic trait responsive to
environmental factors other than shading. The capacity to
elongate is an important selective trait in plants from flood-
prone environments, with fast shoot elongation being a
favourable trait only in environments with shallow and pro-
longed flooding events, because costs associated with this
response prevent its expression in sites with either deep or very
short-duration floods (Voesenek et al., 2004). Stem elonga-
tion in terrestrial environments can result from competition,
and taller plants are known to have a disproportionate advan-
tage in dense stands (Dudley & Schmitt, 1996). However,
plants must follow basic biomechanical laws and therefore
must be able to carry their own weight and to resist wind
forces, which is challenged by stem elongation. An elongated
plant in a dense stand might only need to carry its own weight
because the wind is shielded. When wind shield is not pro-
vided, stems might not grow as tall as would be required for
outcompeting neighbour plants because part of the growth
must be devoted to enhance self-support. There is a large fitness
premium for plants elongating in response to both shading
and wind shield (Anten et al., 2005), but if wind shield dis-
appears or decreases, as when a canopy gap is created, the
more elongated individuals are more vulnerable to mechanical
failure.

For some of the scenarios discussed above, reduced plastic-
ity in response to one factor can render high fitness across a
range of environments involving changes in other factors (i.e.
plasticity is maladaptive). Alternatively, plasticity in response
to a given factor can be directly limited by a given range of
values of another factor (i.e. plasticity is functionally con-
strained). Summarizing, plastic responses to abiotic factors
can be reduced under situations of a conservative resource use
imposed by stressful habitats experiencing unpredictable
environmental changes. Extreme or harmful levels in a given
abiotic factor can negatively influence plastic responses to
another, which has been seen in the low plasticity in response
to light of woody seedlings under limiting water availability.

Finally, extreme or heavily modified phenotypes can be more
vulnerable to further environmental changes, which is
exemplified by the high mortality of elongated shade plants
experiencing cold snaps or strong wind when shielding by
a dense stand disappears.

III. Ecological constraints caused by biotic factors

Earlier work addressing external limitations to the evolution of
adaptive reaction norms mostly considered characteristics of
the abiotic environment (e.g. the magnitude of environmental
heterogeneity or the reliability of cues; Bradshaw & Hardwick,
1989; van Tienderen, 1991; Scheiner, 1993; Sultan, 1995;
Alpert & Simms, 2002; van Kleunen & Fischer, 2005).
However, phenotypic plasticity takes place within an ecological
community and therefore the modulating role of biotic
components should not be overlooked (e.g. Stevens & Jones,
2006; Anderson et al., 2007). In fact, herbivory and inter-
specific competition may limit plant responses to challenging
environments, constraining phenotypic plasticity (see Callaway
et al., 2003). Thus, neighbour plants would be at the same
time the modifying biotic factor and the main environmental
factor. Unfortunately, while the environmental modulation
of plant phenotypic responses to herbivory has been amply
documented (Gianoli & Niemeyer, 1996; Cipollini & Bergelson,
2001; Gianoli, 2002; Izaguirre et al., 2006; Roberts & Paul,
2006), the herbivore-induced constraints on plant phenotypic
plasticity to abiotic factors have not been evaluated in detail
(Miner et al., 2005).

In this section, we will focus on the limits to plasticity
imposed by herbivores. Our analysis concentrates mainly on
above-ground herbivory, but there is some evidence that
below-ground herbivores may also influence plant responses
to environmental factors (e.g. Dunn & Frommelt, 1998).

Plant traits affected or induced by herbivory are very
diverse; they include chemical defences (Agrawal, 1999, 2000),
mechanical structures such as thorns, spines and trichomes
(Gómez & Zamora, 2002; Young et al., 2003), nutritional
quality traits (Bi et al., 1997), volatiles that attract predators
and parasites of herbivores (Takabayashi & Dicke, 1996;
De Moraes et al., 1998), and extrafloral nectaries that attract
defensive ants (Agrawal & Rutter, 1998; Huntzinger et al.,
2004). Compensatory responses of plants to damage also
involve changes in plant phenotype that potentially affect the
interactions of plants with other organisms. Finally, herbivores
and pathogens may cause changes in plant traits not related at
all with resistance or tolerance, often as a consequence of
resource re-allocation in damaged plants. For example, it has
been found that damage affects flowering phenology, flower
display, flower morphology and size, pollen and nectar pro-
duction, and plant architecture (Quesada et al., 1995; Strauss
et al., 1996; Strauss, 1997; Aizen & Raffaele, 1998; Gómez,
2003). Examination of the potential effects of herbivory on
plant phenotypic plasticity may contribute to the extensive
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discussion on the ecological significance of herbivores for
plant fitness (e.g. Marquis, 1992; Paige, 1992; Louda &
Potvin, 1995; Crawley, 1997; Wise & Abrahamson, 2007).

The vast research on the changes in plant chemistry, phys-
iology, morphology and development that occur following
herbivory (Karban & Baldwin, 1997; Zangerl, 2003; Agrawal,
2005) might be useful for understanding how these responses
interact with plant phenotypic plasticity (Cipollini, 2004, 2007;
Roberts & Paul, 2006). For instance, the biosynthesis of
indole glucosinolates and indole alkaloids, defensive metabo-
lites that may be induced upon herbivory (Karban & Bald-
win, 1997), includes indole-acetaldoxime, a precursor of the
hormone indole-acetic acid (Hansen & Halkier, 2005), which
plays a central role in the stem-elongation response to shading
(Morelli & Ruberti, 2000). Similarly, leaf wounding may
elicit both an increase in proteinase inhibitors, which may
deter herbivores (Broadway et al., 1986), and a decrease in the
levels of indole-acetic acid (Thornburg & Li, 1991), which
may limit plastic responses to shade. A field study with gene-
tically modified plant varieties found some evidence that
mutant plants constitutively expressing the shade-avoidance
response suffer more herbivory than wild types (McGuire
& Agrawal, 2005). Translocation to leaves of nonstructural
carbohydrates stored in stems and roots allows plants to over-
come the negative carbon balance imposed by deep shade or
herbivory (Myers & Kitajima, 2007). This suggests that the
occurrence of herbivore damage could compromise the
capacity of plants to express metabolic responses to shading.
Nonstructural carbohydrates are also involved in plant toler-
ance to extreme cold (Bravo et al., 2001), and herbivory may
affect the sugar metabolism of plants involved in freezing
protection (Bravo et al., 1997). Finally, several types of com-
pensatory responses associated with tolerance to herbivory
have been reported (Strauss & Agrawal, 1999; Stowe et al.,
2000), including increased relative allocation of resources to
shoots (Mabry & Wayne, 1997), increased photosynthesis
(Nowak & Caldwell, 1984) and delayed flowering (Lennartsson
et al., 1998). These patterns may counteract the functional
responses to drought, such as early flowering (Bennington &
McGraw, 1995; Gianoli, 2004), decreased stomatal conduct-
ance that reduces both water loss and photosynthesis (Schulze,
1986), and the increased root:shoot ratio of biomass allocation
(Lloret et al., 1999; Gianoli & González-Teuber, 2005).

Phenotypic plasticity may be limited both by the direct
effects of herbivory on the plant (biomass loss that compro-
mises future growth or differentiation) and by the plastic
responses triggered by herbivores, such as the induction of
costly chemical defences or changes in above-ground/
below-ground resource allocation. Our general graphical
analysis (Fig. 4) does not distinguish between direct and indi-
rect effects of herbivory. This analysis focuses on the conse-
quences of herbivory for the plant in terms of the change in
slope (and elevation) of the reaction norm of a phenotypic
trait whose variation allows a better resource use in the novel

environment. Following early suggestions on the use of the
term constraint (Antonovics & van Tienderen, 1991), herbivory
is herein considered a constraint to plasticity with reference
to a null hypothesis. Thus, such constraint is evidenced by
significant departures of the reaction norm of damaged
plants from the reaction norm of undamaged plants (the null
hypothesis, continuous line in Fig. 4). This reaction norm is
therefore preliminary assumed to be the ‘right’, functional
response of the plant’s trait to the environmental gradient,
regardless of the presence of herbivores. The fact that the
joint effect of herbivory and resource limitation often has
detrimental consequences for plant fitness (Hawkes &
Sullivan, 2001) suggests that the reaction norm of damaged
plants should reflect constrained phenotypic trait values
rather than optimized ones, particularly in the challenging
environment.

In spite of the abundance of studies addressing the interac-
tive effects of herbivory and environmental factors on plants,
few studies have explicitly evaluated the effect of damage on

Fig. 4 Scenarios of constraints on plasticity imposed by biotic factors 
(herbivory). The panels show the reaction norms in the absence 
(continuous line) and presence (dashed line) of herbivores. It is 
assumed that the continuous line depicts the functionally optimal 
response of the plant to the environment (i.e. the phenotype of 
greatest fitness in each environment). In panel a there is no effect of 
herbivory on the slope of the reaction norm (i.e. on plasticity) but its 
elevation is changed, causing a slight departure from the optimal 
phenotype in each environment. In panels b and c there is a 
significant reduction in the slope of the reaction norm caused by 
herbivores. Whereas in b reduced plasticity results in a maladaptive 
phenotype in environment 2, in c reduced plasticity causes a 
maladaptive phenotype in environment 1. In d there is a change in 
the direction, but not in the slope, of the reaction norm, causing a 
maladaptive phenotype in both environments. If environments 1 and 
2 are equally stressful, then the examples shown in b and c are similar 
in terms of plant fitness losses. If environment 2 is more stressful than 
environment 1, then b depicts a scenario of greater fitness losses than 
c. The most injurious case is shown in d.
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plant phenotypic plasticity. The latter studies, together with a
noncomprehensive sample of other studies where such an
effect could be inferred a posteriori, are summarized in Table 1.
Selected cases include plasticity to five key environmental fac-
tors for plants: shade; drought; CO2; soil nutrients; and flood-
ing (Table 1). The most common pattern found is a reduction
in the slope of the reaction norm of damaged plants (the case
shown in Fig. 4b). Although in some cases the resulting con-
strained phenotype might be explained, invoking stress amel-
ioration as a result of herbivory (e.g. a reduced slope in the
reaction norm of water use efficiency may be a consequence
of a decreased water loss owing to consumption of leaf area),
an ecophysiological analysis of most of the cases in Table 1
indicates that damaged plants could not attain the target
phenotype in the challenging environment. This supports our
assertion of the preceding paragraph regarding the constrained
nature of the reaction norm of plants suffering herbivory.

Several research lines may complement the approaches to
biotic modulation of phenotypic plasticity to abiotic factors
outlined herein. There is some evidence that symbiotic endo-
phytic fungi may affect the phenotypic plasticity of host
plants in response to soil nutrients, the net effect being geno-
type specific (Cheplick et al., 1989; Cheplick, 1997). Mycor-
rhizal infection may modify plant responses to phosphorous
addition (re-analysis of the data from Lu & Koide, 1994),
leading to reaction norms of reduced slope but increased ele-
vation (the case shown in Fig. 4c). These findings broaden our
perspective and call for the inclusion of beneficial species in
future analyses of the effects of biotic factors on phenotypic
plasticity. Moreover, this also suggests that further research
should explore whether there is genetic variation for the
sensitivity of reaction norms to herbivory, both within and
among populations. Another unexplored and potentially
important aspect involved in the modulation of plant pheno-
typic plasticity by biotic factors is the capacity of allelopathic
compounds to limit reaction norms. This would allow us to
quantify in greater detail the negative impacts of competition
on the target plant, constituting another avenue for insights
on the ecological limits of plasticity.

In summary, we have shown that: (1) herbivory may con-
strain the expression of plant phenotypic plasticity in response
to abiotic factors; (2) symbiotic species also affect plastic
responses of plants to abiotic factors; (3) the elucidation of
underlying mechanisms is at hand; and (4) these phenomena
remain largely underexplored despite the availability of suitable
data to test for their occurrence and relevance.

IV. Ecological costs: influence of plasticity on 
species interactions

Ecologists are starting to recognize the importance of trait-
mediated interactions (TMI), namely the effects that occur
on the interacting organisms as a consequence of changes
in their phenotypes (Bolker et al., 2003; Dill et al., 2003;

Luttbeg et al., 2003; Trussell et al., 2003; Werner & Peacor,
2003; Schmitz et al., 2004). Plants are frequently involved
in TMIs as their phenotype is modified by the effect of
herbivores and pathogens in a variety of ways (Gómez &
González-Megías, 2007). While in the preceding section we
addressed the effects of above-ground herbivory on plant
phenotypic responses to abiotic factors, in this section we
summarize how changes in plant phenotype elicited by a given
plant or animal species may play a role in the interactions
between the plant and other organisms. We will describe cases
in which phenotypic modifications of plants following damage
affect the interactions between plants and both natural
enemies and mutualistic species. It is important to distinguish
between the inevitable effects of damage and active responses
to it, which include inducible defences and compensation.
The latter are putative cost-saving mechanisms and, thereby,
can be considered as adaptive phenotypic plasticity allowing
plants to maximize fitness in each environment (Karban &
Baldwin, 1997; Cipollini, 2004).

Plants usually interact with many organisms simultane-
ously. While plants are pollinated by many different and dis-
parate animals, from insects to birds and mammals, they are
also attacked by many different kinds of herbivores, from large
ungulates to tiny bugs, beetles or flies, and can be infected
with many different types of microscopic pathogens. In these
multispecific scenarios, the modification of the plant pheno-
type can indirectly affect the interaction that the plant
maintains with other species, an effect named trait-mediated
indirect interaction (TMII) that is a particular case of TMI.
From a plant perspective, the occurrence of TMIIs may mean
either a cost or a benefit of phenotypic plasticity (Fig. 5). For
instance, phenotypic plasticity is costly when the modifica-
tion of trait values caused by one herbivore increases the inter-
action with a second or subsequent-acting herbivore (Fig. 5b).
For example, Danell & Huss-Dannell, 1985) reported that
Betula pendula trees browsed by moose (Alces alces) were pre-
ferred over unbrowsed trees by some phytophagous insects
such as aphids, psyllids, leaf-miners and leaf-gallers. Martin-
sen et al. (1998) similarly found that the leaf beetle Chrys-
omela confluens prefers the resprouts from Populus fremontii
and P. angustifolia individuals damaged by the beaver Castor
canadensis because they are richer in nitrogen. This increase in
insect attack occurs because damage by mammalian herbiv-
ores can provoke overcompensatory growth in plants and/or
rejuvenation of plant tissues. Overcompensation increases
food availability for insects, whereas rejuvenation leads to
plant tissue of higher quality (Kruess & Tscharntke, 2002a).

Phenotypic plasticity is also costly when the modification
of the plant phenotype decreases the interaction with mutu-
alistic organisms (Fig. 5c). For instance, there is evidence that
herbivory by ungulates (Gómez & Zamora, 2000; Gómez,
2003), caterpillars (Strauss et al., 1996; Lehtilä & Strauss,
1997), spittle bugs (Hämback, 2001) or mechanical damage
(Mothershead & Marquis, 2000) may decrease plant attractiveness
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Table 1 Examples of studies finding an effect of herbivory or damage on plant phenotypic plasticity

Plant species Herbivory treatment Environmental gradient Effect of herbivory on reaction norm (scenario in Fig. 4) Source

Chenopodium album Caterpillars: 34% leaf area Shade: 100% vs 62% PAR Stem length: unchanged slope, reduced elevation [A] 1
Convolvulus arvensis Clipping: 25% leaf area Shade: 100% vs 5% PAR Internodes length: reduced slope [B] 2

Petiole length: reduced slope [B]
Leaf shape: reduced slope [B]

Convolvulus demissus Clipping: 50% leaf area Drought: watering every 10 d vs every 3 d Root:shoot ratio: reduced slope [B] 3
Xylem water potential: reduced slope [B]
Root biomass: inversed slope [D]
Water use efficiency: reduced slope [B]

Convolvulus demissus Leaf beetles: 50% leaf area Drought: watering every 10 d vs every 3 d Root:shoot ratio: reduced slope [B] 4
Leaf area: reduced slope [B]
Water use efficiency: reduced slope [B]

Solanum dulcamara Aphid colony during 4 wk CO2: 350 vs 700 µl per litre Total leaf area: reduced slope [B] 5
Asclepias syriaca Aphid colony during 5 wk CO2: 350 vs 700 µl per litre Root:shoot ratio: unchanged slope, reduced elevation [A] 5
Rumex obtusifolius Leaf beetles: 3% leaf area CO2: ambient vs elevated (+ 250 µmol) Dark respiration: inversed slope [D] 6

Stomatal conductance: reduced slope [C]
Ambrosia artemisiifolia Aphid colony during 2 months Soil N: medium (1.0 mM) vs low (0.2 mM) Root:shoot ratio: reduced slope [B] 7
Scirpus ancistrochaetus Clipping: 50% stem height Neutral shade: 70% vs 37% PAR Root:shoot ratio: reduced slope [B] 8
Festuca ovina Repeated defoliation Soil N: high (2.0 mM) vs low (0.02 mM) Primary root diameter: reduced slope [B]; 9

Length of root axis: unchanged slope, reduced elevation [A]
Lolium perenne Repeated defoliation Soil N: high (2.0 mM) vs low (0.02 mM) Primary root diameter: reduced slope [B] 9
Madia sativa Clipping of apical bud Drought: watering every 8 d vs every 4 d Root:shoot ratio: reduced slope [B] 10
Heliconia acuminata Clipping: 50% leaf area Shade: canopy gaps vs forest understory Root:shoot ratio: reduced slope [C] 11

Leaf area ratio: reduced slope [C]
Salix nigra Clipping: one-third stem height Flooding: control vs continuous flooding Root:shoot ratio: reduced slope [B] 12

Capital letters in brackets at the end of the fourth column [A, B, C, D] refer to the possible scenarios of constraints on plasticity outlined in Fig. 4. Only those studies with bold numbers (1–5) 
in the last column explicitly addressed the effect of herbivory on plasticity.
PAR, photosynthetically active radiation.
1, Kurashige & Agrawal (2005); 2, Gianoli et al. (2007); 3, Quezada & Gianoli (2006) (The study lacked a control environment and damage treatment; the reaction norm of damaged plants is 
inferred after results of similar studies in the plant species with a complete factorial design. The same applies for the next reference.); 4, E. Gianoli et al. unpublished; 5, Hughes & Bazzaz (2001); 
6, Pearson & Brooks (1996) (there was a significant herbivory-by-CO2 interaction, and slopes were crossed); 7, Throop (2005) (our analysis of the slopes indicated reduced plasticity, which was 
not concluded by the authors. The herbivory-by-nitrogen interaction was not significant, but the authors did not conduct a separate statistical analysis for aphids, which were pooled with beetles, 
and the analysis included three levels of soil N); 8, Lentz & Cipollini (1998) (the herbivory-by-light interaction was significant but included four levels of shading. Our analysis of the slopes 
indicated reduced plasticity, which was not specifically concluded by the authors); 9, Dawson et al. (2003) (evaluation of slopes indicated reduced plasticity following the results of a posthoc 
test across herbivory and soil N treatments, but this was not explicitly concluded by the authors); 10, W. L. Gonzáles et al. unpublished (the herbivory-by-watering interaction was significant. 
Our analysis of the slopes indicated reduced plasticity, which was not specifically concluded by the authors); 11, Bruna & Ribeiro (2005) (the herbivory-by-habitat interaction was significant. 
Comparison of the slopes indicated reduced plasticity, which was not stated by the authors); 12, Li et al. (2005) (the herbivory-by-flooding interaction was significant. Our analysis indicated 
reduced slope of plants suffering light herbivory compared with undamaged plants, when considering plasticity to continuous flooding. This was implied but not explicitly concluded by the 
authors).



Tansley review

© The Authors (2007). Journal compilation © New Phytologist (2007) www.newphytologist.org New Phytologist (2007) 176: 749–763

Review 757

to pollinators via changes in the plant phenotype, particularly
in floral traits (see Strauss, 1997). On the contrary, pheno-
typic plasticity is beneficial when the modification of plant
phenotype as a consequence of prior damage decreases the
interaction with subsequent antagonist organisms (Fig. 5c).
For example, the architectural modification caused by
ungulate damage to some woody plants severely affects
those insects dependent on complex structures, such as
sap-suckers and caterpillars (Tscharntke & Greiler, 1995;
Abensperg-Traun et al., 1996; Bestelmeyer & Wiens, 1996;
Dennis et al., 1997; Tscharntke, 1997; Kruess & Tscharntke,
2002a,b). Mammalian herbivores also induce the production
of defensive responses by plants that could negatively affect
insects (Gómez & González-Megías, 2002). Some studies
have demonstrated that many insect herbivores are able to dis-
criminate among damaged and undamaged plants (Reznik,

1991; Dolch & Tscharntke, 2000). For example, experimental
defoliation on alder Alnus glutinosa, simulating damage by
ungulates, reduces consumption by the leaf beetle Agelastica
alni (Dolch & Tscharntke, 2000). Insects could also have a
significant counter-effect on mammal herbivores by inducing
defence responses in plants (Karban & Baldwin, 1997, and
references therein). In this case, the occurrence of TMIIs
might change the usually asymmetrical outcome of the
mammal–insect competition, because it would cause the smaller
organisms to outcompete the larger ones. Unfortunately, to
our knowledge, no study has yet been conducted to explore
these potential indirect effects of insects on mammals via
induced plant responses.

The ideas on plasticity and TMIIs can be extended to situ-
ations where the first species is also a plant. For example, when
the focus plant is a protégée of a nurse plant, the former modi-
fies its phenotype in response to the latter, affecting plant
quality and thus the intensity of the interaction with the her-
bivores. Therefore, the reasoning regarding Fig. 5 can apply
equally well to the situation of species 1 being a plant, which
can be beneficial (facilitation) or detrimental (competition)
for the focus plant. It has been shown that certain plants can
protect other plant species from herbivory (e.g. Smit et al.,
2007) but little is known about the role that the plastic
responses of the protégée can play on the overall outcome of
all the interactions involved. This is because plasticity and
interactions of plants have only been addressed for direct plant–
plant TMIs (Callaway et al., 2003). Interestingly, plant–plant
interactions have been found to exhibit an ontogenetic drift
(Miriti, 2006), which takes place in parallel to the better
explored ontogenetic drift in plasticity itself (Coleman et al.,
1994; Valladares et al., 2006). Thus, future studies on the
limits of plastic responses should focus not only on differences
in responses between life-history stages and how this might
affect competition and plant community structure and dynamics
via TMIs, as suggested by Strand & Weisner (2004), but also
explore how TMIs themselves change over the ontogeny of a
plant. Although we have focused on the ecological consequences
of phenotypic modifications triggered by animals and plants
interacting with the target plant, there is also evidence that
interactions with mutualistic mycorrhizal species differen-
tially affect plant phenotype, modifying plant tolerance to
herbivores (Bennet & Bever, 2007) and attractiveness to pol-
linating insects (Gange & Smith, 2005).

V. Plasticity and global change

Plasticity is frequently invoked in studies exploring the impact
of global change on key plant species and communities (Bawa
& Dayanandan, 1998; Rehfeldt et al., 2001; Maron et al.,
2004). The importance of phenotypic plasticity as a buffer
against extinction has not been widely appreciated. In fact, the
extent of species’ losses may have been overestimated in many
simulations of distribution shifts induced by global change

Fig. 5 Potential outcomes of the effect of one species (species 1) on 
the value of a trait of a focal plant (continuous line) and on its indirect, 
trait-mediated effect on a second species (dashed lines, representing 
intensity of interactions between focal plant and species 2; 
abundance of species 2 could be a valid surrogate of intensity of 
interaction in certain situations). For the sake of simplicity, the main 
assumption of this model is that trait value is a sole function of the 
presence of species 1. (a) No cost of phenotypic plasticity because 
changes in trait value induced by species 1 have no effect on species 
2; (b) phenotypic plasticity is beneficial if species 2 is mutualist and 
costly if species 2 is antagonist; and (c) phenotypic plasticity is costly 
if species 2 is mutualist and positive if species 2 is antagonist. The shift 
from a situation depicted in one panel to that depicted in another one 
can take place as the result of a change in the identity of the 
interacting species, the abiotic conditions, or both.
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because the plasticity of individuals in populations of
threatened species is not considered (Thuiller et al., 2005). In
an environment rapidly changing on local and global scales,
narrowly adapted populations with low plasticity in selectively
important characters might be at a higher risk of extinction
(Valladares, in press).

Various pieces of evidence suggest that global change
should in principle favor high levels of phenotypic plasticity
in plants (Parmesan, 2006). However, global change often
involves simultaneous changes in two or more abiotic and
biotic factors, which – as discussed above – may impose
restrictions on plastic responses to the environment. Con-
sequently, we observe in nature a wide range of imperfect solu-
tions to the conflicting situations faced by plants in changing
and complex environments. As shown in Fig. 5, only three
interacting species can lead to a broad range of adaptive values
of plasticity for the focus plant, a situation that can be further
complicated by the spatial and temporal heterogeneity of
the main abiotic factors. This complexity emerging from
the simultaneous consideration of several species and factors,
together with the interactions among them, can explain the
co-existence of species with contrasting plasticities and ques-
tions the notion that plastic phenotypic responses to global
change are always adaptive. Global change might alter pheno-
typic integration, as suggested by the uncoupling of growth,
foliage dynamics and cone production induced by midterm
climatic variability in a Scots pine population at its southern
range (Martínez-Alonso et al., in press). Thus, global change
may both induce differential plastic responses in co-occurring
species and influence features such as phenotypic integration
that may in turn influence plasticity for certain traits.

Global change may also indirectly affect plants through
effects on phytophagous insects (Hódar & Zamora, 2004), or,
more generally, through pronounced effects on other co-
occurring animal and plant species (Peñuelas et al., 2002).
Climate change has been claimed to be responsible for the
range shifts northward and upward of many species in northern
hemisphere ecosystems (Thuiller et al., 2005), but because
species differ in their sensitivity to climate, shifts vary across
species and thus species interactions can be significantly
modified. Furthermore, global change involves more environ-
mental changes than just global warming and altered precip-
itation patterns. For instance, increased levels of CO2 in the
atmosphere involve an increase of the C:N balance of plant
tissues, lowering the food quality for most herbivores. Herbiv-
ores may respond by increasing the level of leaf consumption
and consequently the damage to the plant or may simply show
lower performance, and the level of plant chemical defences
can also be affected by a change of CO2 (Arnone et al., 1995).
Warmer temperatures differentially affect co-existing species
and alter the synchronizations among plants, herbivores and
other interacting animals (Battisti, 2004). If damage by her-
bivores actually constrains the ability of plants to respond to
environmental pressures, as discussed in previous sections,

then the consequences of herbivory on plant performance
may scale up in a scenario of changing environments. Two
important components of global change are the invasion by
exotic herbivores and the increased unpredictability and
stressfulness of climate. Therefore, concurrent selective pres-
sures on plant populations by herbivory and environment can
be expected to become more common and intense.

Because plasticity of many plant species might not be able
to compensate for the current rate of environmental change,
the option would be to take advantage of the capacity for
rapid microevolutionary change. Climate change has been
shown to be a potent selective factor leading to the adaptive
evolution of key plant traits for an annual species in just a few
generations (Franks et al., 2007). However, the challenge
might be out of reach for slow-growing species with a long
generation time, such as trees (Parmesan, 2006; Valladares, in
press). Rapid climate change coupled with habitat fragmenta-
tion is leading to intense selective pressure and decreased
genetic flow, respectively, which in turn leads to a decreased
genetic diversity in slow-growing species (Jump & Peñuelas,
2005). Global change is thus imposing complex and opposing
selective pressures to slow-growing, long-living species, which
in turn limits the extent and ecological benefits of phenotypic
plasticity, modifies species interactions, and decouples climate
and local adaptation, leading to an increased vulnerability to
extreme climatic events and to a higher risk of mortality of
trees under the new climatic scenarios (Valladares, in press).

Collectively, all these results reveal that our current knowl-
edge about the role of phenotypic plasticity in either buffering
or amplifying the impact of global change on plant species
and communities is not yet enough to enhance significantly
the predictions of future biodiversity scenarios because of the
intrinsic complexity of the ecological limits to plasticity.

VI. Concluding remarks

It is clear that the concept of phenotypic plasticity has become
an important part of modern evolutionary and ecological
research (Pigliucci & Kaplan, 2006; Valladares et al., 2006),
and it is now recognized as central to evolution rather than a
minor phenomenon, as was the case not very long ago (Sultan,
1992). We are beginning to understand the patterns and
mechanisms involved in plastic responses of plants to single
environmental factors, but we are still far from unraveling the
pattern and extent of plasticity in ecologically realistic settings
and, above all, the ecological limits and implications of the
various potential responses of plants to complex, multifactor
environments.

Despite the growing interest in the costs and limits of plas-
ticity, it is widely accepted that they are difficult to demon-
strate (DeWitt et al., 1998). The same applies to the case of
adaptive plasticity, which is taken for granted in most studies
(Gianoli & González-Teuber, 2005; Ghalambor et al., 2007).
To understand why plasticity is not more universal we need
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not only studies of fitness–plasticity relationships from gene
expression to the phenotype, as recommended by van Kle-
unen & Fischer (2005) but also mechanistic and ecophysio-
logical studies unveiling trade-offs and functional limits to
plasticity (e.g. Atkin et al., 2006). Future studies aimed at
unravelling why plasticity is not more universal should be
tackled with a broad ecological perspective and the experi-
mental design should take explicitly into account the other-
wise obvious realizations that species are not alone and that
many environmental factors act in concert.
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